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Two-dimensional cellular automaton model of traffic flow with open boundaries
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Department of Information Science, Saga University, Saga 840, Japan
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A two-dimensional cellular automaton model of traffic flow with open boundaries are investigated by
computer simulations. The outflow of cars from the system and the average velocity are investigated. The time
sequences of the outflow and average velocity have flicker noises in a jamming phase. The low-density
behaviors are discussed with simple jam-free approximat{@k063-651X%96)02609-§

PACS numbd(s): 64.60.Cn, 05.70.Ln

[. INTRODUCTION and vertical directions. They found a sharp transition be-
tween a freely moving phase at low vehicle density and a
Models of traffic flow have relations to wide varieties of jamming phase at high vehicle density. The characteristics of
physical systems. A traffic flow system is one of the asym-the transition were studied by Nagat4@D] and Fukui and
metric exclusion processes. They are nontrivial statisticalshibashi[11,12. Two types of jam phase were discussed by
mechanical systems because of a lack of detailed balanc&adaki and Kikuch[13,14. The model has been extended to
Studies of these nontrivial systems explore the profoundake into account the probability of changes in vehicle direc-
structure of statistical mechanics. Studies of exclusively intions[15,16.
teracting particle systems, like traffic flow, also relate to Two-dimensional CA models of traffic flow show many
equilibrium and nonequilibrium properties of granular flows, physically interesting phenomena, phase transitions, and
surface growth, dynamics of defects in solids, and so on. Theelf-organization. Cellular automaton modeling of traffic sys-
model | will discuss here may be one of the simplest exiems, however, is a toy model. It should be clarified which
amples of nonequilibrium colliding granular flows. features strongly depend on the model itself. Characteristic
Traffic flow problems have been studied mainly throughfeatures of the BML model are, for example, deterministic
fluid dynamics, car-following models, coupled map lattice dynamics, periodic boundaries, restrictions on the car desti-
models, and cellular automat¢8A) models. Many attempts nation, road arrangement without traffic quede], and so
have been made to apply CA modeling to complex phenomon. In this paper, open boundary conditions instead of peri-
ena including fluid because of computational simplicity. Cel-odic ones are used to investigate the emergence of a traffic
lular automaton modeling of traffic flow is one of the re- jam in a two-dimensional CA model.
cently developing areas. One of the simplest CA models of The organization of this paper is as follows: The model is
traffic flow in a one-way expressway is the rule-184 elemengiven in Sec. Il. The dynamics is described with binary ar-
tary CA[1], which is a simple asymmetric exclusion rule. In rays. The outflow of cars from the system is investigated in
spite of the simplicity of the model, it shows a phase transi-Sec. lll. The jam-free approximation is discussed. In Sec. IV
tion from a freely moving phase at low vehicle density to athe average velocity of cars is investigated. Section V is
jamming phase at high vehicle density. The computationaflevoted to discussions.
simplicity of CA models also enables us to take many real-
istic features of traffic problems into account. More realistic
models considering speed variation of cars or effects of
blockades have been investigated in one-dimensional models The model is the same as model | of BML except for the
[2-5]. 1/f fluctuation has been observed in both actual exboundary conditions. Contrary to the original BML model,
pressway$6] and model$3,7]. Self-organized criticality has cars are injected probabilistically into both the left and lower
also been studiefB]. boundaries of the system and flow out deterministically from
Traffic networks, for example, a traffic system of a whole both the right and upper boundaries.
city or an expressway network, consist of many complicated Up-directed and right-directed cars are exclusively dis-
ingredients. It is very hard to model all of the features oftributed in theNXN square lattice. Each site is empty or
traffic networks. Two-dimensional CA models of traffic occupied by one up-directed or right-directed car. Cars can
flow, therefore, are very abstract models of traffic networksmove one step at a time if and only if the adjacent site in the
One of the simplest two-dimensional CA models of traffic destination is empty. There is a traffic light controlling the
flow has been investigated by Biham, Middleton, and Levinewhole system as up-directed cars can move only at even time
(BML) [9]. Their model is a simple extension of the rule-184 steps and right-directed cars only at odd time steps.
CA to two dimension. Cars are distributed on a square lattice The number of right-directefLip-directedl cars at a time
of NX N sites with periodic boundaries both in the horizontalt and a positiorr=(i,j) (1<i,j<N) is expressed by a bi-
nary arrayu;(t)={0,1} [»;(t)={0,1}] [16]. The bulk dy-
namics, namely, dynamics for bulk siteg,jj (1<i<N,
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directed carscan be expressed as 100x100(p=0.40)
TR .
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wherex andy denote unit vectors of right and up directions, : i Mot
respectively. The binary functioo(t)=tmod2 represents
the control by the traffic light. The condition(t) v;(t)=0 FIG. 1. A snapshot of the simulation. The system size is
holds because one site can not be occupied by both up ad@0x 100 andp=0.4. The black and gray dots show right-directed
right cars simultaneously. and up-directed cars, respectively. There are some local jam clus-

The first termo(t) wi(t){mrs2(t) + vio2(t)} in Eq. (1) ters. Jam clusters are sorted out with the maximum throughput

denotes that a right-directed car remains at the rsifethe (p=213).

right adjacent site is occupied by a right-directed or up-

digrectedJ car. The injection E))f a rié/ht-dir%cted car from thpe ve(t+1)={1-o(OH1-uVH{1—-ve(O)}rr_y(1)

left adjacent site is given by the second term +o(t)v(t) (6)

oW){1—pur(OHLI-vi()}ur_x(t). The last term

{1—o(t)}u/(t) shows that a right-directed car does notgives the dynamics of up-directed cars on the upper edge.

move at odd time steps. The same decomposition of(&q. In the current simulations, the system has no car at the

can be done for the dynamics of up-directed cars. initial time t=0. Cars are injected with Eqg$3) and (4)
Cars are injected from the lower and left sides of theprobabilistically and run deterministically obeying Eq$)

system. If the site on the edges of the system is empty, a caihd (2). If cars reach the edges of the system, they flow out

is injected with a probabilityp. The injection of right- by Egs. (5) and (6). In the early traffic light cycles to

directed cars on the left edge=(1,j) (1<j<N) is given by  O(N), the front lines of right-directed and up-directed cars

replacing the injection ternfisecond termin Eqg. (1) with a  collide to form a global traffic jam configuration in case

probabilistic injection p>p. (pc is discussed later The global jam is sorted out
with the maximum throughput, where the number of cars per
wit+ )=o) ui(O{pr () + v 2(H} site isp=2/3. Then new small jam clusters are created and
sorted out again and again. Figure 1 shows a snapshot of the
+o(W{1-u(OH1-r()}(p) system. In the simulation, the system runs I20@mes
_ - (100N traffic light cycleg from the initial condition for re-
1= Ohurv), @ laxation and quantities discussed later are observed for

wheref(p)={0,1} is a function which returns unity with a 200N <t<400N.

probability p. The injection of up-directed cars on the lower

edgef=(i,1) (1=<i=<N) is given by ll. OUTFLOW
) i o o The first quantity we observe is the outflow of cars from
vi(t+ 1) ={1— o) r/(O{pr () +r7y(D)] the system. By virtue of the dynamics, E@S) and(6), the
11— (DY 1= () 1= vo(D)VF outflow is the number of cars appearing on the upper and
1= o (ORI wOHL =7 (O} (P) right edges of the system. The average outfiyyis defined
+o(t)vp(1). (4) as the average number of cars appearing on the edges per site

and traffic light cycle. The results of the simulation are given

Cars flow out from the upper and right edges of the sysin Fig. 2.
tem deterministically. The dynamical equations for cars on In the low injectionp region, the system can be assumed
the upper and rights edge are given by deleting the first termt® be free from a traffic jam. In this case the injection process

in Egs. (1) and (2). For sites on the right edge=(N,j)  Will be controlled only by the number of cars which stay on

(1<j<N), the lower and left edges of the system. The number of up-
directed(right-directed cars in each columfrow) is given
wit+ D) =o(t){1— i/ ()H1— v () ur_ (1) by pouN. There are PN cars on the left edge of the sys-
tem. These cars prevent car injection from the left side of the
+H{1-o(t)}u;(t) (5 system, and the remaining {12p,)N sites can accept car

injection. At the next time step, therefore, the number of cars
gives the dynamics of right-directed cars on the right edgeinjected on the left edge will be (22p,,)Np. The equilib-
For sites on the upper edge= (i,N) (1<i<N), rium condition between the injection and the outflow
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FIG. 2. Average outflow from the system for the system size

50x 50, 100< 100, 200< 200, and 406 400. The bold line gives
the jam-free approximatiop,,= p/(1+2p), which is given in the
text.

Pour=(1=2pou)P (7)
gives
— b
Pout= +2p (8)

as the average outflow. This naive estimation of the outflo
(jam-free approximationagrees well with the simulation re-

sults for p<p. (pc.~0.2). The extrapolation of Eq8) to

p=1 givesp,,=1/3, which corresponds to the maximum

throughput.

In the high injectionp region, the system has traffic jam
clusters in the bulk area. The outflqw,; is suppressed and
lower than that given by the jam-free approximation dis-

cussed above.

The time-dependent behavior of the outflopy,(t’)
(t" denotes the traffic light cycle antd=0,...,T—1) and
its power spectrum
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FIG. 3. Time-dependent behavior pf,(t) for p=0.1 with the
system size 400400 and its power spectruip. The bold line is
fitted with the power spectrum 18 k< 10° by the method of least
squares.
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FIG. 4. Time-dependent behavior pf (t) for p=0.6 with the
system size 400400 and its power spectruip. The bold line is
fitted with the power spectrum & k<10® by the method of least
squares.
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is observed, wherd is the maximum traffic light cycles
obeyingT=27<100N [18]. In the highp region(Fig. 4), the
power spectrum op,,{t) showsl,~k™ ¢ behavior(Fig. 5).
This shows the existence of the self-organized jam clusters in
the bulk system. In the low region (Fig. 3), on the other
hand,pgyu(t’) shows random fluctuation around the average
and the power spectrum is beared with weak flicker noise.

IV. AVERAGE VELOCITY

The average velocity of the cars is the number of cars
moving during one traffic light cyclgnamely, two time
steps. The arraysu andv are binary ones. Thus the average
velocity, is half of the Hamming distance betweef(t) and
u(t+2) [v(t) and »(t+2)]. Caution must be paid to tread
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FIG. 5. The behavior of the exponeat The exponents are
calculated to fit the power spectrumpwithin 10'<k<10° with the
method of least squares. In the high>p. region, the exponent
behaves as a constaat-0.8 which depends on the system size.
Below the criticalp. the exponent sharply decreases because the
low p power spectrum shows a weak flicker noise.
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FIG. 6. Average velocity for the system size >680, 0
100X100, 200<200, and 40&400. The bold line is 4
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the edges of the system. For example, for right-directed cars, FIG. 7. Time-dependent behavior oft) for p=0.1 with the

if the left edge site is empty the site must be excluded fronfystem size 408400 and its power spectrud. The bold line is

the calculation of the Hamming distance because of thdtted with the power spectrum tek<10® by the method of least

probabilistic injection. If the right edge site is occupied by Squares.

right-directed car, the site must be excluded because of the

deterministic outflow. The same treatment is applied to up- V. DISCUSSION

directed cars. Figure 6 shows the results of the simulation.
In the low p region, the jam-free approximation gives the

outflow py,; as discussed in Sec. Ill. There arp,gN? cars

in the system. Assuming no jam in the bulk area, cars ar

distributed randomly. There arp?,N? colliding pairs of

cars. The number of freely moving cars will be

2pouN?(1— (1/2)pou) - And the average velocity is

In this paper a two-dimensional cellular automaton traffic
flow model with open boundaries was investigated by com-
uter simulation. The bulk dynamics is deterministic. Cars
re probabilistically injected from the left and lower sides of
the system and flow out from the right and upper sides de-

terministically.

The average outflow,,;, which is the number of cars
flowing out from the right and upper sides per traffic light
To1- } p (10) cycle and per site, obeys, = p/(1+2p) in the low injec-
ve 21+2p° tion region p<p.), wherep is the injection rate. This is

well understood with the jam-free approximation. High in-

This estimation agrees with the results of the simulation lesi€€tion p>p. causes the emergence of traffic jam clusters in

than the case of the outflow. The discrepancy seems to coniB€ System and suppress the outflow. In the high injection

from the effect of collisions with more than two cars. These
effects are expected to decrease faster than two-car collisions

in large systems. The simulation results seems to show that 101 _400x400  p=0.600
the jam-free approximation becomes better with increasing 102 | \yeck 123
system size. 403
At the critical injection p.~0.2, the average velocity =TT
shows a sharp phase transition with its sudden decrement by 104
the formation of jam clusters. It increases gradually with the 105
increment ofp abovep.. The behavior ob just abovep, 106
shows strong finite size effects. 10 05
The time-dependent average veloaitft’) and its power
spectrum 1.0
LT 0.8 |
3= 7 2 v(the 2, ay " o sl g
t'=0
0.4 :
shows the same characteristics as those of the outfays. 0 10000 20900 30000 40000

7 and 8. The high p case shows the flicker noise as

ka_ki_’g with B~1.2 (Fig. 9) reflecting the emergence of a  FiG. 8. Time-dependent behavior oft) for p=0.6 with the

traffic jam. The lowp average velocity seems to have weak system size 408400 and its power spectrud. The bold line is

flicker noises. This shows the temporary formation of a smalfitted with the power spectrum 18:k<10® by the method of least
traffic jam. squares.
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the local density = 1/2. Sorting out of jam clusters gives the

2.0_ 100x100 = ( J
18] 200%200 average velocitw =1. In two-dimensional cases, temp_oral
L6 400%400 jam clusters are alsq sorted out and fqrm_the maximum
L4 throughput current withp=2/3. In the periodic boundary
] L egent cases, once theoherentmaximum throughput currents are
1.2 saanepeiste. created, they dominate the whole system and new traffic jam
o 104 clusters are hardly created. In the open boundary cases, on
08, -1, the other hand, theoherentmaximum throughput currents
0.64o-, flow out from the system and thimcoherentcurrents are
04" injected. Theseancoherentinjections form new traffic jam
02]° clusters and suppress the average velocity.
0.0 . In this paper, | called the event pt- 0.2 phase transition

The event is not a phase transition in the strictest sense of the
word. No critical behavior is found at that point. The value
of the average velocity shows sharp discontinuity at
calculated to fit the power spectruip within 10*<k<10® with the p~0.2. It has finite value above the point however. An ad-

method of least squares. In the high-p. region, the exponent equate order parameter is needed to strictly define the phase
behaves as a constaft-1.2 which depends on the system size. ransition.

Below the criticalp. the exponent sharply decrease because the low | Fig. 6, the average velocity increases above the point
p power spectrum shows a weak flicker noise. p~0.4. As mentioned above, the maximum flow with
p=2/3 is formed behind jam clusters. The contribution of the
region, the time-dependent behavior of the outflow showsnaximum flow to the average velocity is expected to grow
flicker noises. with the injection ratep. The increment op also seems to
The average velocity of cars was also investigated. Thenhance the deterministic feature of the injection process.
jam-free approximation value=1—p/(1+2p)/2 does not These factors may contribute to the increment of the average
agree well with the simulation results. The reason seems toelocity. On the contrary, the increment of the injection rate
be the many car collision effect which will be suppressed inp contributes to the formation of jam clusters which de-
a large system size. The average velocity shows sharp phaseeases the average velocity. The competition of this cluster
transition afp,~0.2. In the high injection region, the average formation effect and the previous two factors decides the
velocity is suppressed by the emergence of traffic jam clusbehavior of the average velocity. The investigations of the
ters. The time-dependent behavior of the average velocitgtatistical and dynamical properties of spatial structures may

0.0 02 04 06 08 1.0
p

FIG. 9. The behavior of the expone. The exponents are

also shows flicker noises in the high injection region. In theclarify the behavior of the system.

low injection region, it shows weak flicker noise because of

the formation of temporal jam clusters.

Tadaki and Kikuchi show the existence of two types of
jam phases in the BML mod¢lL3,14]. The current models

In the original BML model, which has periodic bound- with open boundaries, seems to have only one jam phase.
aries, cars are freely moving with=1 in the low density The high density random jam phase found in the periodic
region. On the contrary, the current system with open boundboundary case seems to be one of the finite size effects. In
aries shows the average velocity less than unity even in ththe viewpoint of statistical mechanics, finite size effects will
jam-free state. The reason for the difference is as follows: A¥e neglected in realistic macroscopic systems. On the con-

is well known in a one-dimensional cag@/olfram’s rule-

trary, real traffic network systems are finite and the finiteness

184), temporal jam clusters in the low density region aremay be an important factor of the system. Observations of
sorted out and form the maximum throughput current withreal traffic network systems are expected.
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